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Abstract. The pion multiplicity per participating nucleon in central nucleus–nucleus collisions at the ener-
gies 2–15 A·GeV is significantly smaller than in nucleon–nucleon interactions at the same collision energy.
This effect of pion suppression is argued to appear due to the evolution of the system produced at the early
stage of heavy–ion collisions towards a local thermodynamic equilibrium and further isentropic expansion.

Pions, which are copiously produced in high energy inter-
actions, play a key role in the collision dynamics. However,
in spite of hard efforts, the pion production in nucleus–
nucleus interactions is far from being completely under-
stood (see, e.g., [1]). Thus, it is of particular interest to
compare the properly normalized data on pion multiplic-
ity from nucleus–nucleus and nucleon–nucleon collisions.

One would expect that inelastic secondary interactions
produce additional pions and therefore their number per
participating nucleon should be larger in nucleus–nucleus
than in nucleon–nucleon collisions at the same initial en-
ergy per nucleon. The experimental data on pion multi-
plicities amazingly contradicts this intuitive expectation.
Indeed, it has been recently found [2,3] for BNL AGS en-
ergies and below that the number of produced pions per
participating nucleon, 〈π〉/〈NP 〉, in central collisions of
identical nuclei (A + A) is lower (pion suppression) than
in inelastic nucleon–nucleon (N + N) interactions.

In Fig. 1 we show the ratio 〈π〉/〈NP 〉 as a function of
〈NP 〉 at three initial momenta 2.1, 4.5, and 15 A·GeV/c.
The data is taken from the compilation [2], where the pion
multiplicities from various experiments are recalculated to
obtain the total multiplicities independent of the rapidity
and/or transverse momentum cuts. In all three cases the
relative pion production decreases when going from N +N
interactions (〈NP 〉 = 2) to central A+A collisions. At 2.1
A·GeV/c the pion yield per nucleon is smaller by a factor
of about 3. At all energies the pion suppression is ap-
proximately independent of the size of (sufficiently large)
colliding nuclei (see Fig. 1 and the review [2]). Further, the
pion suppression factor defined as

∆
〈π〉

〈NP 〉 =
〈π〉AA

〈NP 〉AA
− 〈π〉NN

〈NP 〉NN
, (1)

appears to be approximately independent of the collision
energy (up to BNL AGS energies) [2,3]. As seen in Fig. 2,
it equals about −0.35.

The aim of this paper is to discuss the mechanism lead-
ing to pion suppression. We try to connect the scaling
properties of the suppression factor (1) – its approximate
independence of the size of colliding nuclei and the initial
energy – with the hypothesis supported by the existing
experimental data that the system created in nucleus–
nucleus collisions approaches the local thermodynamical
equilibrium [4–7].

We assume that the system produced at the early stage
of A + A collision is formed due to the superposition
of N + N interactions. At this stage the chemical com-
position of hadronic matter is expected to be the same
as in the nucleon–nucleon collisions. The system however
evolves towards thermodynamic equilibrium and we as-
sume that local equilibrium is reached before the system
disintegrates into the final state free hadrons. Then, the
difference between the properly normalized pion multiplic-
ities in A + A and N + N collisions appears as a result
of

– the chemical equilibration of the initially nonequilib-
rium hadronic matter,

– the hydrodynamic expansion preceding the system
freeze–out.

We analyse the two mechanisms of pion suppression sep-
arately. Let us start with the equilibration one.

A large fraction (50–100%) of baryons emitted in in-
elastic N + N interactions is known to be in the state of
nucleon isobars (deltas and heavier baryonic resonances),
which successively decay into pions and nucleons [8–13].
On the other hand, it is also known, see e.g. [14], that in
the equilibrated system at temperatures smaller than 150
MeV, which are characteristic for the energy domain of
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Fig. 1. The pion multiplicity per participant nucleon 〈π〉/〈NP 〉
as a function of the participant number for nucleon–nucleon
interactions (square) and central collisions of identical nuclei
(circles) at 2.1, 4.5, and 15 A·GeV/c. The lines are shown to
guide the eye

Fig. 2. The experimentally measured suppression factor
∆(〈π〉/〈NP 〉) as function of the collision energy which is ex-
pressed through the Fermi variable defined as F ≡ (

√
sNN −

2mN )3/4/s
1/8
NN . The dashed line shows the mean value equal

−0.35

interest, the fraction of baryon number carried by deltas
does not exceed 50%. Therefore, when the system cre-
ated in A + A collisions evolves towards equilibrium, the
initial surplus of deltas has to be reduced causing the sup-
pression of the final state pions. The microscopic process
responsible for the ∆ absorption is ∆ + N → N + N [15].
Multi–nucleon reactions are also discussed in this context,
see e.g. [16]. So far the qualitative argument and now we
move to a model formulation.

An equilibrium state of the system of nucleons, deltas
and pions (heavier mesons and baryons are neglected in
our considerations) is controlled by two parameters: bary-
on density (ρB) or baryon chemical potential (µB) and
temperature (T ). The system, which is formed at the early
stage of central A + A collision, is assumed to be close to
thermal equilibrium. This assumption can be justified by
short (relatively to the evolution time) thermal equilibra-
tion time [17,18]. The fraction of baryon charge carried by

deltas, however, exceeds its chemical equilibrium value.
Thus, we describe such a system in terms of thermody-
namics but an additional parameter, which measures the
delta surplus (DS), is introduced. Specifically, we define

λ∆ ≡ ρ̃∆ − ρ∆

ρB
,

where ρ̃∆ and ρ∆ are the initial and equilibrium (corre-
sponding to the initial temperature) densities of deltas.

Keeping in mind that in the final state there are direct
pions and those originating from the delta decays, the pion
multiplicity per participating nucleon is

〈π〉
〈NP 〉 =

ρ∆ + ρπ

ρB
, (2)

with ρπ being the pion density. The suppression factor
(1) due to the chemical equilibration of initial DS matter
produced in A + A collisions by a superposition of N + N
interactions then reads(

∆
〈π〉

〈NP 〉
)

DS

=
ρ∆(µB , T ) + ρπ(T )

ρB

−ρ∆(µi
∆, T i) + ρπ(T i)

ρi
B

, (3)

where µB and T describe the equilibrium state while µi
∆,

T i and ρi
B the initial nonequilibrium one formed in the

early stage of heavy–ion collision. The particle and energy
densities used later are given by the well known formulas:

ρj(µj , T ) =
∫

d3p

(2π)3
gj

e
β(

√
p2+m2

j
−µj) ± 1

,

εj(µj , T ) =
∫

d3p

(2π)3
gj

√
p2 + m2

j

e
β(

√
p2+m2

j
−µj) ± 1

,

where mj and µj are particle masses and chemical poten-
tials with j = π, N, ∆; β ≡ 1/T . The numbers of internal
degrees of freedom are: gπ = 3, gN = 4, and g∆ = 16. The
chemical potential of pions µπ is zero. Due to the strong
interaction the above ideal gas formulae are probably not
very realistic at T larger than, say, 100 MeV and ρB sig-
nificantly exceeding normal nuclear density. The most im-
portant effect i.e. the short range repulsion in the hadron
system can be taken into account via the van der Waals
correction. Then, the particle number ratios, which are of
our particular interest, could be not far away from their
ideal gas values (see e.g. [7]).

The pion density depends solely on the temperature
while the delta density is a function of the temperature
and delta chemical potential. The values of chemical po-
tentials in (3) are chosen in such a way that

ρB = ρ∆(µB , T ) + ρN (µB , T ) ,

ρi
B = ρ∆(µi

∆, T i) + ρN (µi
N , T i) ,

where ρN is the nucleon density. Since we use the param-
eter λ∆ to control the delta surplus, we require that

ρ∆(µi
∆, T i) − ρ∆(µi

B , T i)
ρi

B

= λ∆ , (4)
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where ρ∆(µi
B , T i) is the equilibrium value of the delta den-

sity at the temperature T i and baryon density ρi
B . This

equilibrium density is found from the equation

ρi
B = ρ∆(µi

B , T i) + ρN (µi
B , T i) . (5)

A complete treatment of the pion suppression requires
a simultaneous study of collective expansion and chemical
equilibration processes. To estimate the role of the two
phenomena we however discuss them separately. There-
fore, we assume that the hydrodynamic expansion does
not develop essentially at the time of chemical equilibra-
tion and the latter process is studied at the constant vol-
ume. Therefore, the baryon and energy densities are the
same for initial and equilibrium phases:

ρi
B = ρB ,

ε∆(µi
∆, T i) + εN (µi

N , T i) + επ(T i)
= ε∆(µB , T ) + εN (µB , T ) + επ(T ) .

After these two equations are solved simultaneously
with the additional conditions (4) and (5), the suppression
factor (3) is a function of three free parameters choosen
to be ρB , T and λ∆. We have calculated numerically the
pion suppression for the temperatures and baryon densi-
ties which cover the values characteristic for the hadronic
matter formed in A + A collisions. The temperature T
then varies from 50 to 150 MeV while the baryon density
ρB from 2ρ0 to 5ρ0 with ρ0 = 0.16 fm−3 being the normal
nuclear density.

The pion suppression (3) disappears when the param-
eter λ∆ goes to zero. To estimate the maximal value of λ∆

we note that at high energies of colliding nuclei, where the
temperature approaches 150 MeV, the equilibrium value
of ρ∆/ρB is about 0.5, and consequently one has λ∆ < 0.5.
At the lowest energies of interest, where 〈π〉NN/〈NP 〉NN∼= 0.5, the majority of pions in N + N collisions comes
from the delta decays while the equilibrium delta density
in A+A is close to zero. Therefore, we again have λ∆ < 0.5
and consider λ∆ = 0.5 as the largest value.

In Fig. 3 we show the pion suppression as a function
of the equilibrium temperature T at ρB = 2ρ0 and 5ρ0
for the extreme λ∆ value. We also present the results for
λ∆ = 0.3. Figure 3 covers the whole physically reasonable
domain of T , ρB as well as λ∆. The suppression factor is
seen to range from −0.2 to −0.4. Keeping in mind how
strongly the pion multiplicity varies with T , ρB and λ∆,
one finds very striking a very weak dependence of the pion
suppression on the mentioned parameters. This in turn
agrees with an approximate independence of the suppres-
sion factor of the participant number and collision energy
(cf. Figs. 1, 2). More than that, the numerical values of
the pion suppression due to the equilibration process are
close to the experimentally measured mean suppression
equal of −0.35.

The chemical equilibration leads to an increase of the
system temperature (T > T i), and therefore the number
of direct pions increases as well. The initial nonequilibrium
number of deltas however strongly decreases. In Fig. 4 we
show ρπ/ρB and ρ∆/ρB ratios before (dotted lines) and

Fig. 3. The suppression factor (3) as a function of the tem-
perature T . The extreme cases of ρB = 5ρ0 and ρB = 2ρ0 are
shown by, respectively, the dotted and solid lines. The upper
pair of the dotted and solid lines corresponds to λ∆ = 0.3 while
the lower one to λ∆ = 0.5

Fig. 4. ρπ/ρB and ρ∆/ρB ratios in the initial state (dotted
lines) and in in the chemical equilibrium state (solid lines). The
equilibrium baryonic density is chosen as 2ρ0 and λ∆ = 0.5

after (solid lines) the chemical equilibration. The sum of
these ratios defines the total pion multiplicity per partic-
ipating nucleon (2).

The suppression remains almost unchanged when di-
rect pions are removed from our calculations by setting
gπ = 0. Therefore, the pion suppression occurs in our
model due to the equilibration of the baryon subsystem.
Consequently, the assumption that the direct pions are in
equilibrium is not very important and can be relaxed. We
return to this point at the end of our paper.

Note also that the entropy per baryon, 〈S〉/〈NP 〉 ≡
s/ρB , increases due to the chemical equlibration. This is
shown in Fig. 5. The entropy density s is calculated from
ideal gas formulae for chemical nonequilibrium initial state
with parameters T i, µi

N , µi
∆ (dotted line) and for chemical

equilibrium with parameters T, µB (solid line).

Let us now estimate the effect of the second mecha-
nism of the pion suppression i.e. the absorption of pions
due to the system hydrodynamic expansion. We call it
a delayed freeze–out (DF) effect in A + A collisions: the
hadronic system produced in these collisions is larger than
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Fig. 5. The entropy per participating nucleon in the initial
state (dotted lines) and in in the chemical equilibrium state
(solid lines). The equilibrium baryonic density is chosen as 2ρ0

and λ∆ = 0.5

that from N +N interactions and therefore the freeze–out
density is expected to be smaller. We consider an isen-
tropic evolution of the locally equilibrated hadron matter.
It was observed a long time ago [19,20] that number of
pions indeed decreases in the course of such an expansion
of the pion–baryon gas.

The locally equilibrium system starts with ρB , T and
then expands until the freeze–out values ρf

B , T f are
reached. The pion suppression then reads

(
∆

〈π〉
〈NP 〉

)
DF

=
ρ∆(µf

B , T f ) + ρπ(T f )

ρf
B

− ρ∆(µB , T ) + ρπ(T )
ρB

. (6)

Since the entropy is assumed to be conserved during the
expansion, the ratio of the entropy density to the baryon
density is constant. The freeze–out temperature T f can
be thus expressed as a function of ρB , T and ρf

B . Conse-
quently, the pion suppression (6) is controlled by the same
three parameters.

We have found a remarkable ‘scaling’ property of the
pion suppression due to the isentropic expansion which,
as far as we know, has not been noticed before. At fixed T

the suppression (6) becomes a function of the ratio ρf
B/ρB

only. If the thermal pion contribution to the system en-
tropy is neglected, the temperature T f , which is a solu-
tion of an equation of the isentropic expansion, depends at
fixed initial temperature T on the ratio ρf

B/ρB only. The
delta part of the pion suppression (6), ρ∆(µf

B , T f )/ρf
B −

ρ∆(µB , T )/ρB , manifests then the same scaling property
as T f . The thermal pion break the exact scaling, but still
the scaling for T f holds with a high accuracy. The thermal
pion part of the suppression (6) (ρπ(T f )/ρf

B − ρπ(T )/ρB)
does not scale, but the effect is numerically small. There-
fore, the corrections to the ‘scaling law’ for the total pion
suppression factor (6) are very minor (less than a few per-
cent) as long as the initial baryon density is sufficiently
large, say ρB > 0.5ρ0, and the initial temperature is not

Fig. 6. ρπ/ρf
B (solid line) and ρ∆/ρf

B (dashed line) ratios in an
isentropic expansion as a function of ρf

B/ρB . The parameters
are T = 150 MeV and ρB = 2ρ0

Fig. 7. The suppression factor (6) as a function of ρf
B/ρB . The

dotted, dotted–dashed and solid line corresponds to T equal 50,
100 and 150 MeV, respectively

too big, T < 150 MeV. In Fig. 6 we show ρπ/ρf
B and

ρ∆/ρf
B ratios for T = 150 MeV and ρB = 2ρ0. In physical

terms, the scaling tells us that the pion suppression due
to the isentropic expansion mainly results from the delta
absorption.

Our numerical calculations of the DF pion suppression
(6) are shown as a function of ρf

B/ρB in Fig. 7. One sees
that the pion suppression due to the expansion is very
small for the initial temperature T = 50 MeV and reaches
a value of about −0.4 at T = 150 MeV and ρf

B/ρB =
0.1. Thus, it is expected to increase with growing collision
energy (large T ) and the size of the colliding nuclei (small
ρf

B/ρB due to the delayed freeze–out).
The final pion suppression in A+A collisions combines

the effects caused by the equilibration and expansion and
can be calculated as a simple sum of the factors (3) and
(6). As follows from the results presented in Figs. 3 and 7,
the sum varies between −0.2 and −0.7 in the whole phys-
ically acceptable domain of the hadronic matter param-
eters. As mentioned above, we expect the pion absorp-
tion to increase with growing size of the colliding nuclei
and collision energy. This is indeed consistent with data:
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the independence of the pion suppression of the size of
colliding nuclei breaks down for nuclei as heavy as gold.
Then, the pion suppression (1) equals about −0.6 at 11.6
A·GeV/c [2,3]. The same trend is found in the recent GSI
SIS results at lower energies [21].

The suppression caused by DS and DF mechanisms
was calculated under assumption that direct pion compo-
nent is in equilibrium i.e. its chemical equilibration time is
much smaller than the system evolution time. However, as
pointed above, the suppression remains unaffected when
direct pion component is removed from the calculations.
This implies that our results are valid also for the case
when chemical equilibration time of direct pions is much
larger than the evolution time i.e. the number of direct
pions is effectively frozeen.

We summarize our considerations as follows. The sup-
pression of the pion production per participating nucleon,
which is observed in central A + A collisions at the ener-
gies of BNL AGS and below, has been discussed within
a thermodynamical approach. An approximate indepen-
dence of the suppression factor (1) on the collision energy
and the participant number (see Figs. 1 and 2) as well as
its numerical value agree with a scenario of the heavy–ion
collision which distinguishes the following three stages:

1. The initial preequilibrium stage when the nonequilib-
rium hadronic system is formed by a superposition of
N + N interactions.

2. The equilibration stage when the number of deltas de-
creases to the equilibrium value leading to the reduc-
tion of the total number of pions (see Fig. 3).

3. The expansion stage of locally equilibrated hot had-
ronic matter which causes an additional pion suppres-
sion (see Fig. 7).

For the initial energies of BNL AGS and below this
scenario is checked to be qualitatively correct after adding
more mesonic and baryonic resonances and going beyond
the ideal gas approximation applied here. It would be also
interesting to check our picture of the pion suppression
against microscopic transport calculations.

As a final remark we should stress that at the CERN
SPS energies (160–200 A·GeV) one observes a pion en-
hancement instead of the suppression when going from
N + N to A + A collisions [2]. This qualitatively differ-
ent behaviour can not be understood within the model
presented here. A novel feature of A+A collisions at SPS
energy is a role of meson resonances which becomes much
more important than that at AGS energy and below: a
number of mesons at the freeze–out in A+A collisions at
SPS is several times larger than number of baryons. The
chemical equilibration and hydrodynamical expansion in
such a system may lead to a change of the suppression pat-
tern observed at low energies and deserve a special study.
It is also possible that the explanation of the pion enhance-
ment effect requires the introduction of new mechanisms.
A formation of the Quark–Gluon Plasma at CERN SPS
energies has been considered as an obvious candiatate [3],
however other mechanisms are also discussed [22].
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